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Tar  production from  biomass pyrolysis in a fluidized bed  reactor: a novel 
turbulent  multiphase flow formulation 
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A novel multiphase flow model is presented for describing the pyrolysis of biomass 
in a ‘bubbling’ fluidized bed reactor.  The  mixture of biomass and  sand  in a gaseous 
flow is conceptualized as a particulate  phase composed of two classes interacting  with 
the  carrier gaseous flow. The solid biomass is composed of three  initial species: cellulose, 
hemicellulose and lignin. From each of these  initial  species, two new solid  species originate 
during pyrolysis: an ‘active’  species  and a char,  thus  totaling seven  solid-biomass  species. 
The gas phase is composed of the original  carrier gas (steam),  tar  and gas; the  last 
two species originate from the  volumetric pyrolysis  reaction. The conservation  equations 
are derived  from the Boltzmann  equations  through  ensemble  averaging.  Stresses  in the 
gaseous phase  are  the  sum of the  Newtonian  and Reynolds (turbulent)  contributions. 
The  particulate  phase  stresses  are  the  sum of collisional and  Reynolds  contributions. 
Heat  transfer  between  phases,  and  heat  transfer between classes in the  particulate  phase 
is modeled, the last resulting  from collisions between sand  and  biomass.  Closure of the 
equations  must  be performed by modeling the Reynolds  stresses for both  phases.  The 
results of a simplified version (first  step) of the model are  presented. 

1. INTRODUCTION 

Fluidized beds  are  cylindrical,  vertical  containers  that  are extensively  used  in industry 
for chemical  conversion of substances from solid particles.  In a ‘bubbling’ fluidized bed, a 
solid particulate  phase undergoes a chemical  reaction whose products  are  carried away by 
a flow introduced  through  openings in the  bottom section of the  reactor.  The  ‘bubbles’ 
are regions of the  mixture  mostly devoid of particles;  these regions occur as a result of the 
interaction of the  turbulent gaseous flow with  the  particles.  This  investigation is devoted 
to  the  study of such a fluidized bed whose particulate  phase  consists of initially  room- 
temperature biomass  particles mixed with  hot  sand;  the  sand is a high heat  capacity 
tnedium whose role is to  heat  the biomass which pyrolyses upon  reaching a threshold 
temperature [I]. 

Despite  the  many models of fluidized beds,  Kumaran [2] recently acknowledges that 
there is still no consensus  on an  appropriate  continuum  description. According to Enwald 
et  al. [3], few of the  existing models have been  satisfactorily  validated  and even when val- 
idated,  they  contain  assutnptions  that may  invalidate  their  extension to general fluidized 
beds. For example,  the Boussinesq approximation used to  model gas phase  turbulence 



is invalid [4] for modeling flows such as those in fluidized beds which exhibit regions of 
recirculating flow. The status quo is such  that  the  majority of the models are  descriptive 
rather  than  predictive. Our goal is to derive a model that  has  predictive  capabilities. 

Lahey and Drew [5] have proposed a consistent  formalism for the  description of gran- 
ular flows with  no chemical reaction  based  upon  the  concepts of ensemble  averaging and 
phase  averaging.  Additionally,  Drew [6] included  particle-velocity fluctuations effects in 
the previously  derived  model to account  for  their  influence  on  the  interfacial  force  and 
stresses.  Prosperetti  et a1.[7] and  Zhang  and  Prosperetti [8] have  derived a model  based 
on a probabilistic  approach  combined  with  phase  averaging;  these  models  are  primarily 
focussed on  the  continuity  and  momentum  equations,  and [7] considers  the simpler  case of 
an incompressible  carrier flow. An  interesting class of models  is that of Simonin and co- 
workers [9-131 for isothermal  mixtures  without  phase  change,  and [14] for a more  general 
case but  without chemical  reactions. The  same  model  has  been  adopted by Enwald et  al. 
[3] and by Peirano [15]. These  models  are  derived by taking  moments of the  Boltzmann 
equation,  and  the  most  advanced [12-151 include an extension of the  Jenkins  and  Richman 
[18] model for internal  stress  calculation  to cases where there is a carrier flow interacting 
with  the  particles. Louge et  al. [19,20] have  also  included the influence of gas-particle 
interactions in the collisional stresses but  they  do  not  model collisional heat  transfer. 

The model  derived below  follows the spirit of Simonin [14] and  Peirano [15] and  addi- 
tionally  includes: (1) a general  model of volumetric  particle-reaction, (2) species equations 
for both  gas  and  solid, (3) a formulation for the usually  neglected stress  tensor  resulting 
from  different-class  particle collisions, (4) an explicit  model of the  heat  transfer  resulting 
from  different-class  particle collisions, and (5) a turbulence  model for the  carrier  phase 
(interacting  with  the  particles)  that is not based upon  the Boussinesq approximation. 
Although  Jenkins  and  hfancini [21,22] have modeled  binary mixtures of particles,  there 
is no current  model including  all of the above phenomena. 

2. MODEL DESCRIPTION 

The model  derivation  parallels that of Chapman  and Cowling [23] for the conservation 
equations in a dense  gas  with  the differences that here a gas  interacts  with  the  particles, 
that collisions may be  inelastic, that particles  mass  may  change,  etc. The  particulate 
phase is divided into M classes of particles  (here M = 2: biomass, b, and  sand, s )  and 
a distribution  function is defined for each class f j ( u j , r n j , T ,  yZ,j;x, t )  with j E [I? M ]  
and i E [l, Nj]  (number of species of class j )  where u j ,  mj, T ,  K,j are respectively the 
velocity, mass,  temperature  and species i mass  fraction  in  class j ,  and x is the  location 
of class j particles at time t .  By  definition, nj(x, t )  = f j ( u j ,  mj, Tj, K,j; x, t ) d t j   ( d t j  = 
d u j d r n j d T , d K , j )  is the  number of particles of class j per  unit volume at  any  location x 
in the physical domain.  Both ensemble  averages and Favre  ensemble  averages are defined 
for a property qj 

where aj 3 n3q/G.  The  particulate  phase conservation equations  are derived by mul- 
tiplying the Boltzmann  equation by rnjq3; performing  ensemble  averages for $ j  = ,my' 



(number  density), 1 (continuity), uJ (momentum), Cp,TJ (enthalpy).  and x,, (species); 
and replacing in the resulting equations  the source terms of the form t lQJ /d t  with the ex- 
pressions  found  from the  Lagrangian, single  particle  dynamics  equations. The gas  phase 
conservation equations  are  the classical  Navier-Stokes  (NS) equations. 

2.1. Particle conservation equations 
Particle number density: 

assuming that  there is no  particle  coalescence  or  break-up  (no  source/sink)  during colli- 
sions. 

Continuity: 

assuming that  there is no  mass  exchange during  particle  collisions. 
Momentum: 

- - m 
where Tp 3 -ukuk are  the Reynolds  stresses which must  be  modeled,  and C k ( m k u k )  

are  the collisional  (viscous)  stresses augmented by contributions  (sources)  from collisions 
between  different-class  (i.e.  sand-biomass)  particles. 

Enthalpy : 

where C k ( m k C p k T k )  is the collisions  generated  heat  flux/source; we assume a null ref- 

Species (for k = b only): 
erence T in the definition of the  enthalpy. 



2.2. Gas  conservation equations 
The procedure for obtaining  the  gas conservation equations is to multiply  the sirlgle 

phase NS equations by a phase  indicator, x ,  that is defined as being  unity  in  the gas and 
null otherwise,  and  therefore moves with  the velocity of receding  solid  surfaces, ul, due  to 
pyrolysis. These  equations  are  then ensemble  averaged  (symbol <>)  over all  realizations 
of NS variables,  and new averaged  variables and  their  fluctuations  are defined; both  regular 
(+)and Favre  (+)averages  are defined. The average of the  phase  indicator is denoted by 
- Y 

Qg . 
Continuity: 

Momentum: 

a ( Q g p g U g > / a t  + v + (agijgUgU,) = v . [.. (F + F)]  + agpggFg + 

Species: 

- - 
a(agY,,,pg)/at + v * (QgpgE,gUg) = -v ( a g Q  + sagag - v . (Qgpgyz:$.;) (9) 

Energy: 

a 

where the right  hand side of eq. 7 is the averaged  mass  flux at surfaces 1 ;  the  last  term in 
eq. 8 is the interfacial  averaged  momentum  due to  the  mass flux at surfaces 1 ;  the  third 
term in the right  hand side of eq. 9 is the  double  correlation  between  species  and  velocity 
fluctuations,  the  fourth  term is the averaged mass diffusion flux of species i at surfaces 
I ,  and  the fifth term is the  interfacial averaged flux of species i at surface 1 ;  the  term 

involving T,  u$’ in  eq. 10 contains  the pressure-velocity  correlation and  the Reynolds 
stress  shear work, and the  terms in the last line represent  respectively the energy evolved 
at surfaces  due  to mass  evolution,  the  contact  heat  transfer  evolution  and work due  to 
drag. All of the  surface  contribution  terms must be modeled. 

=’ 



2.3. Modeling of the interphase  transfer  and  reaction source/sink terms 
2.3.1. Interphase  transfer 

The biomass  reaction  scheme  adopted  here is that of Miller and Bellan [l] in which 
there  are  initially  (virgin species) three  components (cellulose, hemicellulose and lignin). 
following identical  reaction  paths,  but  with different (first order)  rates.  Each  component 
,B depolymerizes to  an ‘active’  species  (reaction  rate Kf) which further  reacts  to yield tar 
(K!) ,  and  char  and  gas (K!) in the  proportion X P / (  1 - XP) .  Additionally, tar  reacts  to 
form gas (Kf). The Lagrangian  equations  contain  explicitly  the  interphase  transfer  terms 
as follows: 

Species: d(pbY,,,b)/dt P = sfct..+, + SactcviT P where Sact+g P is the  interphase  production 
while Sactcvir P is the in-phase  reaction  (see  below). P = -dctK! - (1 - Xp)dctK[ for 
each ,f3, where Ki = Afexp[-Ef/&Tb]  with  the  Arrhenius  parameters A? and E! deter- 
mined by Miller and Bellan [l]. The corresponding  terms in the  mass  fraction  equations 
for the  gas  phase  are Starcact P = dctKf and Sgascd P = (1 - XP)ddKf. 

Mass: dpb/dt = CP Sfct4, 
Momentum: dUk/dt = Fk/mk - (vj?g)/pk - CDO.~TR~(U~ - 6,) I U k  - 6, I where FI, 

is a body force, j?, and 6, correspond to  the  turbulent,  but  undisturbed-by-the-particle 
values, Co is the  drag coefficient that incorporates  the blowing effect from the  particle 
(Bellan  and  Harstad, 1987  [16]) and R k  is the  particle  radius.  In  this  model F, = g under 
the  assumption of particle  symmetric  mass  transfer 

Enthalpy: mkC,kdTk/dt = X, s T k A h T k + Q k g f ~ , + ,  m k i  hi, where r denotes  reaction, 
Ah is a heat of reaction  (values  provided  in [l]), hi is the  heat convected away with  the 
mass of each  species i leaving the  particle, ST, = 0, and Q k ,  = X,2nRkNu(Re,, Pr,)(T, - 
Tk) is the  conductive/convective  heat  transfer  where Re, = ~ R I ,  I 6, - uk I / vg  and 
Pr, = p,v,C,,/X,; X, is the gas  thermal  conductivity,  and vg is the  gas  kinematic viscosity. 

h 

2.3.2. In-phase reaction source/sink terms 
Reactions K1, K2 and K3 convert  species  within the  same  phase [l]; th‘ 1s occurs  re- 

spectively for the ‘active’  species  originating from the virgin  species, SfiT = -ZiTKl  = 
-Sacttvir, P for the  char  resulting from the  ‘active’ species, S!haT = XPdctK2, and for the 
gas 7 ’$8 = d T  K4* 

2.4. Modeling of the collisional terms 
2.4.1. Collisional particulate stresses 

Jenkins  and Savage [17] were the  initiators of a comprehensive  model of particle col- 
lisions originated  stresses  in  the  simple  case of single class particles in  absence of an 
interstitial  gas;  this  model was further  elaborated by Jenkins  and  Richman [MI. Louge 
et  al. [19,20] have extended  this  model  to  steady  gas-particle  interactions, while Simonin 
[l4] and  Peirano [15] have  included  the effect of gas  phase  turbulence  and influence of 
turbulence  on  particle  drag. F‘urthermore, Jenkins  and Mancini [21,22] have modeled 
collisions in binary  particles  mixtures,  but  without  gas  interaction. The present  model 
is inspired by the preceding work and  incorporates  turbulence, gas-solid interactions  and 
collisions between  different-class  particles.  Here, the  theory of Jenkins  and Mancini [21] 
is used for a mixture of binary  (sand-biomass), nearly  elastic  spheres,  but  the  momentum 
equation includes now the  drag  term,  just as the formalism of Simonin [14] and  Peirano 



[ 151, xcounts for the  gas-particle  interactions. 

2.4.2. Collisional heat t ransfer  
To our knowledge, collisional heat  transfer between particles  has never been  modeled in 

the  context of fluidized beds.  Collisional  heat  transfer  may in principle  occur  between like 
(sand-sand or  biomass-biomass) and unlike (sand-biomass)  particles.  In  either  situation, 
a model of collisional heat  transfer  can  be  obtained  only if one knows three  quantities: 
(1) the energy  transferred  during a collision, AEc,ll , (2) the  contact  time T,, and (3) 
the collisional area, Awll. For two particles A and B of different temperatures TA and 
TB, one  may estimate AEc,ll = 2 A c , 1 1 ( 7 , 0 . 5 / ~ ) [ ~ ~ ~ ~ ( T ~  - TB)/ (wA + W B ) ]  where wI = 
[X, / (p&,1) ]o .5 .  The collisional time is here  modeled under  the  assumption  that  heat 
transfer  arises from the  sliding  contact of two particles  yielding rc = ~ d /  I UA - UB I , where 
d is the  diameter of the  large  particle  and K is an  empirical  constant to  be  determined by 
comparing  with  appropriate  experiments.  The collisional area  is  assumed  to  be  determined 
by the size of the smaller particle. Using these  quantities,  the  theory of Jenkins  and 
Mancini [21] is used to  calculate  the  source  and flux terms of AEwll. 

2.5. Modeling of the Reynolds stresses 
2.5.1. Carrier gas 

Unlike most  models of gas  turbulence in fluidized beds,  our  model  does not contain 
the Boussinesq approximation which implies that  the  stress  and  strain  rate  tensors  are 
aligned.  This  assumption  is  not  consistent  with  recirculating flow, which is one aspect of 
fluidized beds [4]. Even with  the Boussinesq approximation,  numerical  results may show 
recirculating zones because of the  boundary  conditions,  but  the  results  are inconsistent 
with  the  assumptions  and  therefore  their validity is suspicious.  Here, we model  the  carrier 
turbulence  using  the full differential  Reynolds Stress Model (DRSM)  equations for two 
phase flows. The DRSM equations  are  obtained from the conservation  equations by 
calculating  the average of [xu:NS(uj) + xuyNS(ui)] where NS(ui)  represents  the i th 
component of the  momentum  equations.  The general  result is: 

where all  right  hand side (RHS)  terms of the  equation,  except  the  first, need model- 
ing. The RHS  terms  represent respectively  production due  to  gradients in  mean velocity, 
transport  due  to  both molecular and  turbulent processes, the  pressure-strain  correlation, 
energy  dissipation,  interfacial work due  to exchanges  across the interface,  and effect of 
mass transfer across the  interface. 

2.5.2. Part ides 
The terminology used in [18] for these  stresses is the  ‘between collisions’ stresses,  as 

they  are  due  to  correlations between  particle velocity fluctuations. Following Sinlonin [14] 
and  Peirano  [15],  the Boussinesq  approximation is used to model  the  turbulent  stresses; 
the  practical  implication is that  the granular  temperature  (proportional  to  the  particle 
turbulent  kinetic  energy) is sufficient to describe the  turbulent  features of the  particulate 
flow. The dissipation  rate  entering  the kinetic  energy equation is here  calculated  with 
the expressions obtained from the collisional model of Jenkins  and  Mancini [22]. This 



i ~ ~ ) ~ ) ~ ~ ~ ~ i ~ t ~ i ~ t i o ~ l  will t)c c:hec:kcd (L posteriori by comparing the  predictions of the nunlerical 
sirnulation  with data. 

3. SUMMARY 

A  model of biomass pyrolysis in a fluidized bed  reactor  has  been  (due  to  space con- 
straints) briefly described. The model is extremely  complex due  to  the coupled nature 
of the  dynamic  and  thermodynamic  evolution of the  phases,  and  also  to  the  turbulent 
features of the  carrier  and  particulate flow. Since many of the  aspects of the model are 
novel, it is prudent  to  validate  them sequentially. For this  reason,  the first set of results 
to be  presented is that from  simulations of the  sand-biomass  dynamics in  absence of heat 
transfer,  turbulence or reaction. The  results  thus  obtained allow the validation of both  the 
dynamic  interaction between  phases and  the  calculation of the  particulate  stress  tensor. 
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